Abstract
The structures, Curie temperature, dielectric relaxor behaviors, ferroelectricity, ferromagnetism, and magnetocapacitance of the (1−x)Ba0.70Ca0.30TiO3–xBiFeO3 [(1−x)BCT–xBF, x = 0–0.90] solid solutions have been systematically investigated. The ceramics have coexisted tetragonal (T) and orthorhombic (O) phases when x ≤ 0.06, coexisted pseudocubic (PC) and O phases when x = 0.065, coexisted cubic and O phases when 0.07 ≤ x ≤ 0.12, PC phase when 0.21 ≤ x ≤ 0.42, coexisted T and rhombohedral (R) phases when 0.52 ≤ x ≤ 0.70, and R phase when x ≥ 0.75. Significantly, composition‐dependent microstructures and Curie temperature are observed, the average grain size increases from 1.9 μm for x = 0, reaches 12.0 μm for x = 0.67, and then decreases to 1.3 μm for x = 0.90. At room temperature, the ceramics with x = 0.42–0.70 show piezoelectric properties and multiferroic behaviors, characterized by the polarization‐electric field, polarization current intensity–electric field, and magnetization–magnetic field curves, the composition with x = 0.67 has maximum polarization, remnant polarization, maximum magnetization, and remnant magnetization of 15.0 μC/cm2, 9.1 μC/cm2, 0.33 emu/g, and 0.14 emu/g, respectively. In addition, the magnetocapacitance is evidenced by the increased relative dielectric constant with increasing the applied magnetic field (H). With ΔH = 8 kOe, the composition with x = 0.67 shows the largest values of (εr(H) − εr(0))/εr(0) = 2.96% at room temperature. The structure–property relationship is discussed intensively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.