Abstract

Recently, healthcare systems integrate the power of deep learning (DL) models with the connectivity and data processing capabilities of the Internet of Things (IoT) to enhance the early recognition and diagnosis of disease. Oral cancer diagnosis comprises the detection of cancerous or pre-cancerous abrasions in the oral cavity. Timely identification is essential for successful treatment and enhanced prognosis. Here is an overview of the key aspects of oral cancer diagnosis. One potential benefit of utilizing DL for oral cancer detection is that it analyses huge counts of data fast and accurately, and it could not need clear programming of the rules for recognizing abnormalities. This can create the procedure of detecting oral cancer more effective and efficient. Thus, the study presents an Enhanced Jaya Optimization Algorithm with Deep Learning Based Oral Cancer Classification (EJOADL-OCC) method. The presented EJOADL-OCC method aims to classify and detect the existence of oral cancer accurately and effectively. To accomplish this, the presented EJOADL-OCC method initially exploits median filtering for the noise elimination. Next, the feature vector generation process is performed by the residual network (ResNetv2) model with EJOA as a hyperparameter optimizer. For accurate classification of oral cancer, a continuously restricted Boltzmann machine with a deep belief network (CRBM-DBN) model. The simulated validation of the EJOADL-OCC algorithm is tested by the series of simulations and the outcome demonstrates its supremacy over present DL approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.