Abstract
Bacillus subtilis strains that can produce hyaluronic acid (HA) were constructed by integrating the HA synthase gene (hasA) and the UDP-glucose dehydrogenase gene of group C Streptococcus (hasB) or of B. subtilis itself (tauD) into the amyE locus of the B. subtilis chromosome. All of the inserted genes were under the control of a strong constitutive vegII promoter of B. subtilis. Although HA production could be achieved by expressing hasA alone, coexpressing hasB or tauD with hasA could enhance HA production at least 2-fold. To replenish the energy consumed for HA biosynthesis, Vitreoscilla hemoglobin (VHb) was coexpressed with the HA-expressing genes. With the expression of VHb, not only the cell concentration was enhanced 25%, but also HA production was further increased by 100%. About 1.8 g/L of HA was obtained by the recombinant strain B. subtilis carrying VHb, hasA, and tauD genes in the expression cassette after 30 h cultivation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have