Abstract

The membrane enzyme of hyaluronan synthase (HAS) is the key enzyme in hyaluronic acid (HA) biosynthesis by coupling UDP-sugars. Prior studies proposed the C-terminus region of HAS enzyme mediates the production rate and molecular weight of HA. The current study describes the isolation and characterizations of a transmembrane HAS enzyme isolated from Streptococcus equisimilis Group G (GGS-HAS) in vitro. The effect of transmembrane domains (TMDs) on HA productivity was determined and the shortest active variant was also identified by recombinant expression of full-length and five truncated forms of GGS-HAS in Escherichia coli. We found that the GGS-HAS enzyme is longer than that of S. equisimilis group C (GCS-HAS) which includes three more residues (LER) at the C-terminus region (positions 418-420) and also one-point mutation at position 120 (E120D). Amino acid sequence alignment demonstrated 98% and 71% identity of GGS-HAS with that of S. equisimilis Group C and S. pyogenes Group A, respectively. The in vitro productivity of the full-length enzyme was 35.57µg/nmol, however, extended TMD deletions led to a reduction in the HA productivity. The HAS-123 variant showed the highest activity among the truncated forms, indicating the essential role of first, second, and third TMDs for the full activity. Despite a decline in activity, the intracellular variant can still mediate the binding and polymerization of HA without any need for TMDs. This significant finding suggests that the intracellular domain is the core for HA biosynthesis in the enzyme and other domains are probably involved in other attributes including the enzyme kinetics that affect the size distribution of the polymer. However, more investigations on the recombinant forms are still needed to confirm clearly the role of each transmembrane domain on these properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call