Abstract
AbstractConventional independent component analysis (ICA) monitoring methods extract the feature information of process data by selecting more important independent components (ICs), which discard a small part of ICs that may contain useful information for faults, leading to unsatisfactory monitoring results. However, when the number of sampling points is greater than that of process variables, the ICA monitoring model does not work well. To address the aforementioned problems, a novel monitoring method, multiphase enhanced high‐order information extraction (MEHOIE), is proposed in this paper. The entire production process was first divided into several steady phases and transition phases by the affinity propagation (AP) phase partitioning method. The enhanced high‐order information extraction (EHOIE) model was then built in each phase for fault monitoring. Finally, the algorithm was applied in the penicillin simulation platform and industrial microbial pharmaceutical process. The flexibility and superiority of this algorithm were verified by comparing it with other conventional methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.