Abstract
Multi-phase batch process is common in industry, such as injection molding process, fermentation and sequencing batch reactor; however, it is still an open problem to control and analyze this kind of processes. Motivated by injection molding processes, the multi-phase batch process in each cycle is formulated as a switched system with internally forced switching instant. Controlling multi-phase batch processes can be decomposed into two subtasks: detecting the dynamics-switching-time; designing the control law for each phase with considering switching effect. In this paper, it is assumed that the dynamics-switching-time can be obtained in real-time and only the second subtask is studied. To exploit the repetitive nature of batch processes, iterative learning control scheme is used in batch direction. To deal with constraints, updating law is designed by using model predictive control scheme. An online iterative learning model predictive control (ILMPC) law is first proposed with a quadratic programming problem to be solved online. To reduce computation burden, an offline ILMPC is also proposed and compared. Applications on injection molding processes show that the proposed algorithms can control multi-phase batch processes well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.