Abstract

Asynchronous switching between the controller and the active subsystems in multiphase batch processes may cause the systems to be unstable around the switching instants. In view of this, an average dwell-time method-based iterative learning control (ILC) scheme is proposed in this paper. First, the multiphase process is represented as an equivalent closed-loop two-dimensional (2-D) switched system composed of stable and unstable subsystems, based on which new relevant concepts on the stability of the switched system are given. Second, using an average dwell-time method, the ILC law is designed to guarantee the system exponentially stable. Minimum running time for the stable subsystems and maximum running time for the unstable ones are obtained. Lastly, depending on the maximum time for the unstable subsystems, the idea of putting the controller switching step forward is proposed. In this way, the asynchronous switching is removed such that the unstable subsystem can be avoided. The case study on an injection molding process demonstrates the effectiveness and superiority of the proposed method in comparison with the existing 2D-MPC and one-dimensional traditional control methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call