Abstract

Background & Aims Progression of alcoholic liver disease (ALD) can be influenced by genetic factors, which potentially include specific oncogenes and tumor suppressors. In the present study, we tested the hypothesis that aberrant expression of the proto-oncogene c-myc might exert a crucial role in the development of ALD. Methods Expression of c-myc was measured in biopsies of patients with ALD by quantitative real-time PCR and immunohistochemistry. Mice with transgenic expression of c-myc in hepatocytes (alb-myc tg ) and wild-type (WT) controls were fed either control or ethanol (EtOH) containing Lieber-DeCarli diet for 4weeks to induce ALD. Results Hepatic c-myc was strongly upregulated in human patients with advanced ALD and in EtOH-fed WT mice. Transcriptome analysis indicated deregulation of pathways involved in ER-stress, p53 signaling, hepatic fibrosis, cell cycle regulation, ribosomal synthesis and glucose homeostasis in EtOH-fed alb-myc tg mice. Transgenic expression of c-myc in hepatocytes with simultaneous EtOH-uptake led to early ballooning degeneration, increased liver collagen deposition and hepatic lipotoxicity, together with excessive CYP2E1-derived reactive oxygen species (ROS) production. Moreover, EtOH-fed alb-myc tg mice exhibited substantial changes in mitochondrial morphology associated with energy dysfunction. Pathway analysis revealed that elevated c-myc expression and ethanol uptake synergistically lead to strong AKT activation, Mdm2 phosphorylation and as a consequence to inhibition of p53. Conclusions Expression of c-myc and EtOH-uptake synergistically accelerate the progression of ALD most likely due to loss of p53-dependent protection. Thus, c-myc is a new potential marker for the early detection of ALD and identification of risk patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call