Abstract

Enhanced electron–positron pair production by frequency chirping in one- and two-color laser pulse fields is investigated by solving the quantum Vlasov equation. A small frequency chirp shifts the momentum spectrum along the momentum axis. The positive and negative frequency chirp parameters play the same role in increasing the pair number density. The sign change of the frequency chirp parameter at the moment leads the pulse shape and momentum spectrum to be symmetric, and the number density to be increased. The number density of produced pairs in the two-color pulse field is much higher than that in the one-color pulse field and the larger frequency chirp pulse field dominates more strongly. In the two-color pulse fields, the relation between the frequency ratio of two colors and the number density is not sensitive to the parameters of small frequency chirp added in either a low frequency strong field or a high frequency weak field but sensitive to the parameters of large frequency chirp added in a high frequency weak field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call