Abstract

At high dopant concentrations in Ge, electrically activating all implanted dopants is a major obstacle in the fulfillment of high-performance Ge-channel complementary metal oxide semiconductor devices. In this letter, we demonstrate a significant increase in the electrically-active dopant fraction in In-implanted Ge by co-doping with the isovalent element C. Electrical measurements have been correlated with x-ray absorption spectroscopy and transmission electron microscopy results in addition to density functional theory simulations. With C + In co-doping, the electrically active fraction was doubled and tripled at In concentrations of 0.2 and 0.7 at. %, respectively. This marked improvement was the result of C-In pair formation such that In-induced strain in the Ge lattice was reduced while the precipitation of In and the formation of In-V clusters were both suppressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call