Abstract

AbstractThe behavior of extrinsic dislocation loops in silicon was investigated by transmission electron microscopy. Loops were formed by an amorphizing implant and recrystallization anneal of Si wafers. Wafers were further annealed in either Ar or NH3. Wafers annealed in NH3 formed a thin (∼4 nm) SiNx film. The loops in samples in Ar showed a constant net number of interstitials bound by the loops, while those in samples annealed in NH3 showed a marked decrease. The results are explained by a supersaturation of vacancies recombining with the interstitials in loops. By integrating the measured difference between interstitials bound by the loops in samples annealed in Ar vs. NH3 over the distance from the surface to the loop layer, an estimate for the relative vacancy supersaturation is extracted. Comparison with estimates of vacancy supersaturations with nitridation from the change in Sb diffusivity show good agreement between the two methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call