Abstract
DC electric springs (DCES) have recently been proposed as a potential solution for resolving the issue of power supply-demand imbalance of DC microgrids caused by the fluctuations of intermittent renewable energy sources (RES). Existing control of DCES based on conventional PI compensation are designed for good steady-state performance. The dynamic performance of DCES has not been explored. In this paper, an enhanced digital PI control comprising a state-variable feedback loop, aimed at optimizing both the steady-state and transient performances of the DCES, is proposed. Experiment results show that with this control, faster transient of the DCES is achievable and that the DCES can rapidly tame the possible fluctuations of renewable energy sources in a 48 V DC test grid more effectively.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.