Abstract
DC microgrids fed with substantial intermittent renewable energy sources face the immediate problem of power imbalance and the subsequent dc bus voltage fluctuation problem (that can easily breach power system standards). It has recently been demonstrated that dc electric springs (DCES), when connected with series non-critical loads, are capable of stabilizing the voltage of local nodes and improving the power quality of dc microgrids without large energy storage. In this paper, two centralized model predictive control (CMPC) schemes with: 1) non-adaptive weighting factors and 2) adaptive weighting factors are proposed to extend the existing functions of the DCES in the microgrid. The control schemes coordinate the DCES to mitigate the distribution power loss in the dc microgrids, while simultaneously providing their original function of dc bus voltage regulation. Using the DCES model that was previously validated with experiments, simulations based on MATLAB/Simulink platform are conducted to validate the control schemes. The results show that with the proposed CMPC schemes, the DCES are capable of eliminating the bus voltage offsets as well as reducing the distribution power loss of the dc microgrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.