Abstract

More and more renewable energy sources are integrated into novel power systems. The randomness and fluctuation of such renewable energy sources bring challenges to the static stability and safety analysis of novel power systems. In this work, a multilayer deep deterministic policy gradient is proposed to address the fluctuation of renewable energy sources. The proposed method is stacked with multilayer deep reinforcement learning methods that can be continuously updated online. The proposed multilayer deep deterministic policy gradient is compared with other deep learning algorithms. The feasibility, effectiveness, and superiority of the proposed method are verified by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.