Abstract
In this paper, an enhanced data-driven optimal terminal iterative learning control (E-DDOTILC) is proposed for a class of nonlinear and nonaffine discrete-time systems. A dynamical linearization approach is first developed with iterative operation points to formulate the relationship of system output and input into a linear affine form. Then, an ILC law is constructed with a nonlinear learning gain, which is a function about the system partial derivative with respect to the time-varying control input. In addition, a parameter updating law is designed to estimate the unknown partial derivatives iteratively. The input signals of the proposed E-DDOTILC are time-varying and updated utilizing not only the terminal tracking error of the previous run but also the input signals of the previous time instants in the current iteration. The proposed approach is a data-driven control strategy and only the I/O data are required for the controller design and analysis. The monotonic convergence and effectiveness of the proposed approach is further verified by both the rigorous mathematical analysis and the simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.