Abstract

This paper presents a data-driven optimal terminal iterative learning control (TILC) approach for linear and nonlinear discrete-time systems. The iterative learning control law is updated from only terminal output tracking error instead of entire output trajectory tracking error. The only required knowledge of a controlled system is that the Markov matrices of linear systems or the partial derivatives of nonlinear systems with respect to control inputs are bounded. Rigorous analysis and convergence proof are developed with sufficient conditions for the terminal ILC design and the results are developed for both linear and nonlinear discrete-time systems. Simulation results illustrate the applicability and effectiveness of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.