Abstract

On the basis of a new dynamic linearization technology along the iteration axis, a dual-stage optimal iterative learning control is presented for nonlinear and non-affine discrete-time systems. Dual-stage indicates that two optimal learning stages are designed respectively to improve control input sequence and the learning gain iteratively. The main feature is that the controller design and convergence analysis only depend on the I/O data of the dynamical system. In other words, we can easily select the control parameters without knowing any other knowledge of the system. Simulation study illustrates the geometrical convergence of the presented method along the iteration axis, in which an example of freeway traffic iterative learning control is noteworthy for its intrinsic engineering importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.