Abstract

Protein crystallization is in part driven by the changes in the entropy of the system, but opinions differ as to whether the solute (protein) or solvent (water) molecules make more of a contribution to the overall entropic change. Methylation of lysine residues in proteins has been used to enhance protein crystallization. We investigated using molecular dynamics simulations with explicit solvent molecules, the behavior of several native proteins and their methylated counterparts chosen from an earlier large-scale study. Methylated lysines are capable of making a variety of interactions including H-bonds with protein residues and solvent. We demonstrate that methylation on the lysine slightly increases its side chain conformational entropy by about 3.5 J mol(-1) K(-1). Analysis of the radial and spatial distributions of the water molecules around the methylated lysine surface in oxidoreductase from Streptococcus pneumoniae revealed a larger sphere of water molecules with low entropy, as compared with solvent associated with unmethylated lysine. If methylated lysine were to make interactions at the protein-protein interface, the low-entropy water molecules associated with methylated lysines would be released, resulting in a gain of entropy. We show that this gain more than compensates for the loss of protein entropy. Therefore, we propose that lysine methylation favors the formation of crystals through solvent entropic gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.