Abstract

There have been extensive efforts to develop competitive electrocatalysts using carbon black (CB) supports for high-performance proton-exchange membrane fuel cells with less usage of Pt. Herein, we propose a very promising electrocatalyst architecture based on the three-dimensional Pt/indium tin oxide (ITO)/CB support structure which was enabled by a nonconventional deposition process ensuring very uniform impregnation of Pt and ITO nanoparticles into the CB network. The unusual scales of the Pt (∼1.9 nm) and ITO (∼5.6 nm) nanoparticles were directly related to unexpectedly better performance of the electrocatalytic activities. As a highlight, the electrochemical surface area of the electrocatalyst was maintained very well after the 3000 cycle-accelerated durability evaluation by demonstrating an excellent retention of ∼74.9%. Particularly, the CO tolerance exhibited a low value of ∼0.68 V as the absorption current peak, compared to ∼0.79 V for a commercial Pt/CB catalyst containing twice more Pt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.