Abstract

The existing channel estimation methods for millimeter-wave communications, e.g., hierarchical search and compressed sensing, either acquire only one single multipath component (MPC) or require considerably high training overhead. To realize fast yet accurate channel estimation, we propose a multipath decomposition and recovery approach in this paper. The proposed approach has two stages. In the first stage, instead of directly searching the real MPCs, we decompose each real MPC into several virtual MPCs and acquire the virtual MPCs by using the hierarchical search based on a normal-resolution codebook. Then, in the second stage, the real MPCs are recovered from the acquired virtual MPCs in the first stage, which turns out to be a sparse reconstruction problem, where the size of the dictionary matrix is greatly reduced by exploiting the results of the virtual multipath acquisition. Moreover, to make the proposed approach applicable for both analog and hybrid beamforming/combining devices with strict constant-modulus constraint, we particularly design a codebook for the hierarchical search by using an enhanced subarray technique, and the codebook is also applicable in other hierarchical search methods. Performance comparisons show that the proposed approach achieves a superior tradeoff between estimation performance and training penalty over the state-of-the-art alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.