Abstract

Semiconductor microresonators embedding quantum wells can host tightly confined and mutually interacting excitonic, optical, and mechanical modes at once. We theoretically investigate the case where the system operates in the strong exciton-photon coupling regime, while the optical and excitonic resonances are parametrically modulated by the interaction with a mechanical mode. Owing to the large exciton-phonon coupling at play in semiconductors, we predict an enhancement of polariton-phonon interactions by 2 orders of magnitude with respect to mere optomechanical coupling: a near-unity single-polariton quantum cooperativity is within reach for current semiconductor resonator platforms. We further analyze how polariton nonlinearities affect dynamical backaction, modifying the capability to cool or amplify the mechanical motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.