Abstract

A series of alkyl gallates were evaluated for the antibacterial activity against two common Gram-negative foodborne bacteria (Pseudomonas fluorescens and Vibrio parahaemolyticus) associated with seafood. The length of the alkyl chain plays a pivotal role in eliciting their antibacterial activities and octyl gallate (OG) exerted an excellent inhibitory efficacy. To extend the aqueous solubility, stability, and bactericidal properties of octyl gallate (OG), an inclusion complex between OG and β-cyclodextrin (βCD), OG/βCD, was prepared and identified with various methods including X-ray diffraction (XRD), differential scanning calorimeter (DSC) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the enhanced inhibitory effect and potential antibacterial mechanism of OG/βCD against two Gram-negative and Gram-positive foodborne bacteria were comprehensively investigated. The results show that OG/βCD could function against bacteria through effectively damaging the membrane, permeating into cells, and then disturbing the activity of the respiratory electron transport chain to cause the production of high-level intracellular hydroxyl radicals. Moreover, the reinforced OG/βCD-incorporated polylactic acid (PLA) nanofibers were fabricated using the electrospinning technique as food packaging to extend the Chinese giant salamander fillet's shelf life at 4 °C. This research highlights the antibacterial effectiveness of OG/βCD in aqueous media, which can be used as a safe multi-functionalized food additive combined with the benefits of electrospun nanofibers to extend the Chinese giant salamander fillets shelf life by 15 d at 4 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call