Abstract

A modified biodegradable magnesium alloy (AZ31, 96 wt% Mg, 3 wt% Al, and 1 wt% Zn) with polylactic acid (PLA) nanofibers was obtained by the electrospinning technique. The presence of PLA nanofibers was evidenced using Fourier transform infrared spectroscopy (FT-IR) and using an scanning electronic microscope (SEM) equipped with an energy dispersive X-ray spectroscopy (EDX) module. The degradation behavior of an uncoated Mg alloy and a Mg alloy coated with PLA was evaluated through hydrogen evolution, pH, and electrochemical measurements in simulated body fluid. Contact angle measurements showed a shift from hydrophilic towards the hydrophobic character of the alloy after its coating with PLA nanofibers. Furthermore, the electrochemical measurement results show that the Mg based alloy coated with PLA inhibits hydrogen evolution, thus being less prone to degradation. The aim of this research is not only to reduce the corrosion rate of Mg alloy and to improve its properties with the help of polylactic acid coating, but also to provide a study to understand the hydrophilic–hydrophobic balance of biodegradable magnesium based on surface energy investigations. Taking into account corrosion rate, wettability, and pH changes, an empiric model of the interaction of Mg alloy with PLA nanofibers is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.