Abstract
The millimeter wave (mmWave) channel is dominated by line-of-sight propagation. Therefore, the acquisition of angle-of-arrival (AoA) and polarization state of the wave is of great significance to the receiver. In this paper, we investigate AoA and polarization estimation in a mmWave system employing dual-polarized antenna arrays. We propose an enhanced AoA estimation method using a localized hybrid dual-polarized array for a polarized mmWave signal. The use of dual-polarized arrays greatly improves the calibration of differential signals and the signal-to-noise ratio (SNR) of the phase offset estimation between adjacent subarrays. Given the estimated phase offset, an initial AoA estimate can be obtained, and is then used to update the phase offset estimation. This leads to a recursive estimation with improved accuracy. We further propose an enhanced polarization estimation method, which uses the power of total received signals at dual-polarized antennas to compute the cross-correlation-to-power ratio instead of using only one axis dipole. Thus the accuracy of polarization parameter estimation is improved. We also derive a closed-form expression for mean square error lower bounds of AoA estimation and present an average SNR analysis for polarization estimation performance. Simulation results demonstrate the superiority of the enhanced AoA and polarization parameter estimation methods compared to the state of the art.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have