Abstract

AbstractThis article proposes a new substructuring algorithm to approximate the algebraically smallest eigenvalues and corresponding eigenvectors of a symmetric positive‐definite matrix pencil . The proposed approach partitions the graph associated with into a number of algebraic substructures and builds a Rayleigh–Ritz projection subspace by combining spectral information associated with the interior and interface variables of the algebraic domain. The subspace associated with interior variables is built by computing substructural eigenvectors and truncated Neumann series expansions of resolvent matrices. The subspace associated with interface variables is built by computing eigenvectors and associated leading derivatives of linearized spectral Schur complements. The proposed algorithm can take advantage of multilevel partitionings when the size of the pencil. Experiments performed on problems stemming from discretizations of model problems showcase the efficiency of the proposed algorithm and verify that adding eigenvector derivatives can enhance the overall accuracy of the approximate eigenpairs, especially those associated with eigenvalues located near the origin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.