Abstract
This paper addresses bifurcation properties of equilibria in lumped electrical circuits. The goal is to tackle these properties in circuit-theoretic terms, characterizing the bifurcation conditions in terms of the underlying network digraph and the electrical features of the circuit devices. The attention is mainly focused on so-called singular bifurcations, resulting from the semistate (differential-algebraic) nature of circuit models, but the scope of our approach seems to extend to other types of bifurcations. The bifurcation analysis combines different tools coming from graph theory (such as proper trees in circuit digraphs, Maxwell's determinantal expansions or the colored branch theorem) with several results from linear algebra (matrix pencils, the Cauchy–Binet formula, Schur complements). Several examples illustrate the results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.