Abstract

A wide range of life-history tactics can be found within salmonid fish. The genetic basis for these adaptations remains largely unknown, but we have sought to investigate any large scale genetic changes associated with a non-anadromous life cycle. After the most recent ice age (approximately 9,500 years ago), some populations of Atlantic salmon Salmo salar L., were trapped in fresh water and developed into isolated landlocked populations that managed to complete a full life cycle without ever reaching the marine environment. To explore whether this transition was accompanied by gene-loss events, high-throughput sequencing of a non-migratory Namsblank (‘smablank’), an Atlantic salmon from the river Namsen in Norway, was performed. There were no indications of loss of coding regions and a phylogenetic analysis based on the mitochondrial genome revealed a close genetic relationship between anadromous Atlantic salmon and Namsblank. Lack of large-scale genomic changes suggests that fine-scale (epi)genetic alterations and population genetics processes underlie adaptation to the landlocked life-style. Key words: Landlocked, gene-loss, salmon, Illumina.

Highlights

  • Salmonidae exhibit a tremendous diversity of phenotypic traits both at the interspecific and intraspecific levels

  • Most Atlantic salmon Salmo salar L. have an anadromous life cycle in which they hatch in fresh water, migrate to sea as juveniles, and return to fresh water to spawn and die

  • Matching reads were extracted from the Illumina read database and aligned with a complete reference Atlantic salmon mitochondrial genome that showed a high degree of sequence similarity with our data (GenBank accession number JQ390056) using the CLC Genomics Workbench, version 6.0.4 (CLC bio, Aarhus, Denmark), and a consensus sequence was generated

Read more

Summary

Introduction

Salmonidae exhibit a tremendous diversity of phenotypic traits both at the interspecific and intraspecific levels. We wanted to investigate whether the Namsblank phenotype is linked to genetic changes when compared with anadromous Atlantic salmon.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.