Abstract

Seasonal changes in hypoosmoregulatory ability were compared in landlocked and anadromous strains of Arctic charr and Atlantic salmon. Seawater adaptability was assessed using periodic 48 h seawater challenge tests with 25‰. seawater. The landlocked strains of Arctic charr, two from northern Sweden and one from Southern Norway, displayed similar seasonal changes in seawater adaptability as the anadromous strain. Seawater tolerance increased during spring and remained high until the end of July — early August after which it declined. The two strains of Atlantic salmon displayed different seasonal patterns in hypoosmoregulatory ability. The anadromous strain showed a pronounced seasonal pattern with maximal seawater adaptability in early June. In contrast, seawater tolerance in the landlocked strain improved steadily during spring and remained high until late autumn. During the period of enhanced seawater tolerance, hypoosmoregulatory ability increased significantly with body size in both Arctic charr and anadromous Atlantic salmon. The minimum size at which fish were able to regulate plasma sodium following seawater transfer at a level comparable to freshwater levels (<170 mmol I−1) differed significantly between anadromous Atlantic salmon (ca. 14 cm) and Arctic charr (ca. 22 cm). The results show that seasonal changes in hypoosmoregulatory ability are present in both Atlantic salmon and Arctic charr, and that these physiological traits are retained in the corresponding landlocked strains. However, the seasonal pattern of seawater adaptability as well as the minimum size at which seawater tolerance occurs differs between the two species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call