Abstract
This paper considers a stochastic version of the shortest path problem, the Stochastic Shortest Path Problem with Delay Excess Penalty on directed, acyclic graphs. In this model, the arc costs are deterministic, while each arc has a random delay, assumed normally distributed. A penalty occurs when the given delay constraint is not satisfied. The objective is to minimize the sum of the path cost and the expected path delay penalty. In order to solve the model, a Stochastic Projected Gradient method within a branch-and-bound framework is proposed and numerical examples are given to illustrate its effectiveness. We also show that, within given assumptions, the Stochastic Shortest Path Problem with Delay Excess Penalty can be reduced to the classic shortest path problem.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.