Abstract
Research in efficient methods for solving infinite-horizon MDPs has so far concentrated primarily on discounted MDPs and the more general stochastic shortest path problems (SSPs). These are MDPs with 1) an optimal value function V* that is the unique solution of Bellman equation and 2) optimal policies that are the greedy policies w.r.t. V*. This paper’s main contribution is the description of a new class of MDPs, that have well-defined optimal solutions that do not comply with either 1 or 2 above. We call our new class Generalized Stochastic Shortest Path (GSSP) problems. GSSP allows more general reward structure than SSP and subsumes several established MDP types including SSP, positive-bounded, negative, and discounted-reward models. While existing efficient heuristic search algorithms like LAO* and LRTDP are not guaranteed to converge to the optimal value function for GSSPs, we present a new heuristic-search-based family of algorithms, FRET (Find, Revise, Eliminate Traps). A preliminary empirical evaluation shows that FRET solves GSSPs much more efficiently than Value Iteration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.