Abstract

Abstract This paper considers a stochastic version of the shortest path problem, the Distributionally Robust Stochastic Shortest Path Problem(DRSSPP) on directed graphs. In this model, the arc costs are deterministic, while each arc has a random delay. The mean vector and the second-moment matrix of the uncertain data are assumed known, but the exact information of the distribution is unknown. A penalty occurs when the given delay constraint is not satisfied. The objective is to minimize the sum of the path cost and the expected path delay penalty. As it is NP-hard, we approximate the DRSSPP with a semidefinite programming (SDP for short) problem, which is solvable in polynomial time and provides tight lower bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.