Abstract

We present an enhanced performance of MoSe2 transistors via sequentially depositing Ti and Al in high vacuum to establish TiOx interlayers positioned between the MoSe2 channel and Ti/Al contacts. Transmission electron microscopy analysis revealed the presence of TiOx at the MoSe2/Ti interface. While MoSe2 transistors exhibited poor device performance in the absence of a TiOx interlayer, the introduction of a TiOx interlayer yielded a notable transistor performance, including an on/off ratio of ∼105, a field-effect mobility of ∼40 cm2 V−1 s−1, and a contact resistance of ∼100 kΩ μm. These enhancements were attributed to the beneficial effects of Fermi level unpinning and interfacial doping facilitated by TiOx interlayers. These results underscore the feasibility of incorporating TiOx interlayers to enable the use of conventional Al contacts in MoSe2 transistors, delivering significant implications for enhancing the performance of transition metal dichalcogenide transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call