Abstract

Due to its nontrivial topological state, a magnetic Weyl semimetal often exhibits exotic transport properties that are important for both fundamental physics and potential spintronics applications. In this Letter, we investigate the composition dependences of the structural order, magnetism, and transport properties for the epitaxial Heusler alloy CoxMnGay (CMG) topological Weyl semimetal films grown via molecular beam epitaxy. Our results show that the saturated magnetization, anomalous Hall conductivity, and anomalous Hall angle of CMG are influenced by its composition and structural order. Specifically, we observed that the optimized L21–Co2MnGa alloy exhibits a high intrinsic anomalous Hall conductivity of approximately 913 Ω−1 cm−1 at its maximum, which is attributed to the substantial Berry curvature within its electronic band structures. This study provides valuable insights into how to engineer the topological ferromagnetic state of the Weyl semimetals for future applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call