Abstract

In the ring-shaped Su–Schrieffer–Heeger (SSH) double-chain, the quantum interference between the two different electron tunneling paths of the upper and lower chains has an important influence on the electron transport properties of non-trivial topological edge states. Here, we have studied the electron transport signatures of non-trivial topological edge states in a ring-shaped SSH double-chain system based on the wave-guide theory and transfer-matrix method. In the ring-shaped SSH double-chain with the upper chain being different from the lower one, it is demonstrated that the electron transmission probability displays the four and two resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes, respectively. Whereas in the case of the upper chain being the same as the lower one, the two transmission resonance peaks associated with the non-trivial topological edge states in the weak coupling regime are only found, and that in the strong coupling regime disappear that originated from the destructive interference between the two different electron tunneling paths of the upper and lower chains. Consequently, the variation of the number of transmission resonance peaks associated with the non-trivial topological edge states in the weak and strong coupling regimes suggests that an alternative scheme for detecting non-trivial topological edge states in the ring-shaped SSH double-chain system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.