Abstract
In order to improve the current injection in GaN-based blue vertical-cavity surface-emitting lasers (VCSELs) a dielectric aperture is generally used in combination with an indium–tin-oxide (ITO) layer on the top intracavity p-contact layer. The most straightforward way to realize this introduces a depression of the structure near the optical axis and we show, by using a two-dimensional (2D) effective index method and a three-dimensional (3D) coupled-cavity beam propagation method, that this typically results in optically anti-guided structures with associated high optical losses and thus very high threshold gains. Remarkably, the threshold gain reduces with increased negative guiding, which is due to improved lateral confinement and reduction of lateral leakage. Still, moderately positively guided designs should be preferred to avoid the detrimental effect of lateral leakage and high diffraction loss. To ensure positive index guiding, we propose to planarize the structure or introduce an elevation near the optical axis by additional processing, with an associated reduction in threshold material gain from 6000 to 2000 cm-1 for the studied structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.