Abstract
Saccharomyces cerevisiae cannot assimilate xylose, second to glucose derived from lignocellulosic biomass. Here, the engineered S. cerevisiae strains INVSc-XI and INVSc-XI/XT were constructed using xylA and Xltr1p to co-utilize xylose and glucose, achieving economic viability and sustainable production of fuels. The xylose utilization rate of INVSc-XI/XT was 2.3-fold higher than that of INVSc-XI, indicating that overexpressing Xltr1p could further enhance xylose utilization. In mixed sugar media, a small amount of glucose enhanced the consumption of xylose by INVSc-XI/XT. Transcriptome analysis showed that glucose increased the upregulation of acetate of coenzyme A synthetase (ACS), alcohol dehydrogenase (ADH), and transketolase (TKL) gene expression in INVSc-XI/XT, further promoting xylose utilization and ethanol yield. The highest ethanol titer of 2.91 g/L with a yield of 0.29 g/g at 96 h by INVSc-XI/XT was 56.9% and 63.0% of the theoretical ethanol yield from glucose and xylose, respectively. These results showed overexpression of xylA and Xltr1p is a promising strategy for improving xylose and glucose conversion to ethanol. Although the ability of strain INVSc-XI/XT to produce ethanol was not very satisfactory, glucose was discovered to influence xylose utilization in strain INVSc-XI/XT. Altering the glucose concentration is a promising strategy to improve the xylose and glucose co-utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.