Abstract

Media with engineered magnetization are essential building blocks in magnonics, spintronics, and superconductivity. However, the established thin film and lithographic techniques insufficiently suit the realization of planar components with on-demand-tailored magnetization in the lateral dimension. Here, we demonstrate the engineering of the magnetic properties of CoFe-based nanodisks fabricated by the mask-less technique of focused electron beam-induced deposition (FEBID). The material composition in the nanodisks is tuned in situ via the e-beam waiting time in the FEBID process and their post-growth irradiation with Ga ions. The saturation magnetization Ms and exchange stiffness A of the disks are deduced from perpendicular spin-wave resonance measurements. The achieved Ms variation in the broad range from 720 emu/cm3 to 1430 emu/cm3 continuously bridges the gap between the Ms values of widely used magnonic materials such as Permalloy and CoFeB. The presented approach paves the way toward nanoscale 2D and 3D systems with controllable space-varied magnetic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.