Abstract

Time-resolved circularly polarized pump-probe spectroscopy is used to study the electron spin coherence dynamics in intrinsic GaAs at 9.6K. It is found that the oscillation amplitude of absorption quantum beats reflecting electron spin coherence varies nonmonotonically with photon energy increaing. A circularly dichromatic pump-probe model is developed with both spin-polarized-dependent band filling and band-gap renormalization effects taken into account. The model shows that the oscillation amplitude of quantum beats is dependent on the initial degree of electron spin polarization, spin-detectable sensitivity and band-filling factor whose product results in the non-monotonic variation of the quantum-beat amplitude and agrees very well with our experimental results. The degree of electron-spin polarization involved in energy-split two-level system is defined for the first time. It is found that a degree of electron spin polarization of up to 100% can be photocreated at higher excess-energy levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.