Abstract

Recent experiments have revealed the possibility to optically orient both electron and hole spins in bulk germanium. Here we discuss the wavelength dependence of this spin injection process using time-resolved Faraday rotation. Significant hole spin polarization is found only when addressing indirect optical transitions. In contrast, electron spins can be oriented via both direct and indirect optical transitions and even with excess energies much larger than the spin-orbit coupling energy. For photon energies very close to the indirect bandgap, we find indications that the degree of electron spin polarization is significantly enhanced - a trend in line with theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.