Abstract

We study the optical orientation of electron spins in GaAs/AlGaAs quantum wells for excitation in the growth direction and for in-plane excitation. Time- and polarization-resolved photoluminescence excitation measurements show, for resonant excitation of the heavy-hole conduction band transition, a negligible degree of electron spin polarization for in-plane excitation and nearly 100% for excitation in the growth direction. For resonant excitation of the light-hole conduction band transition, the excited electron spin polarization has the same (opposite) direction for in-plane excitation (in the growth direction) as for excitation into the continuum. The experimental results are well explained by an accurate multiband theory of excitonic absorption taking fully into account electron-hole Coulomb correlations and heavy-hole light-hole coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.