Abstract
Braking energy recovery technology, which is widely used in new energy vehicles, can extend the endurance range and reduce the wear of hydraulic braking system. However, due to its direct impact on the economy and safety of the vehicle, maximizing the recovery efficiency and coordinating its work with the hydraulic system are essential to improve vehicle performance. In this study, a pure electric vehicle driven by dual-motor is considered, and an optimized energy recovery strategy based on braking safety and efficient recovery is proposed, which not only enhances the energy recovery rate, but also shortens the braking distance. For the motor braking part, a torque optimization strategy with the goal of minimizing the energy loss of the regenerative braking system is proposed to improve energy recovery. Simulation results show that after applying this strategy, compared with the average distribution strategy, the energy recovery rate is increased by 3.35% under WLTC cycles. For the electro-hydraulic compound braking part, a dynamic coordinated control strategy with variable reserved motor braking force is proposed for the first time to reduce the error between the actual braking torque and the target braking torque, and the effectiveness is verified by simulation results under typical conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have