Abstract
The multi-energy interconnected energy system (MEIES) consists of multiple energy hubs (EHs) connected through the energy router (ER). To realize the optimal operation of the MEIES, this paper proposes an energy optimization and routing control strategy for the neotype MEIES based on ER using the lower and upper layers. In the lower layer, the multi-energy conversion device and storage device in the energy local area network (E-LAN) are modeled in detail, and the minimum cost electricity-heat-gas-cool multi-energy optimization strategy is realized. In the upper layer, the electric, heating, and natural gas network's energy flow is normalized by strict mathematical derivation in the energy wide area network (E-WAN). The generalized energy loss model of a multi-energy network with the unified mathematical equation is obtained. Then, based on the loss model and fully considering the differences of national conditions and policies, the unified energy routing control strategy of minimum loss local absorption (MLLA) in the monopoly market and of minimum loss multipath transmission (MLMT) in the competitive market are proposed for different decision-makers. Moreover, two kinds of ER transactions of competitive market priority ranking methods are proposed to achieve the expected incentive goal by transferring the energy loss of the transaction from one to another, which are the priority determined by the quotation and transaction volume. Finally, the feasibility and effectiveness of the overall strategy are verified by simulation and comparison.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have