Abstract

A charge trap device based on field-effect transistors (FET) is a promising candidate for artificial synapses because of its high reliability and mature fabrication technology. However, conventional MOSFET-based charge trap synapses require a strong stimulus for synaptic update because of their inefficient hot-carrier injection into the charge trapping layer, consequently causing a slow speed operation and large power consumption. Here, we propose a highly efficient charge trap synapse using III-V materials-based tunnel field-effect transistor (TFET). Our synaptic TFETs present superior subthreshold swing and improved charge trapping ability utilizing both carriers as charge trapping sources: hot holes created by impact ionization in the narrow bandgap InGaAs after being provided from the p+-source, and band-to-band tunneling hot electrons (BBHEs) generated at the abrupt p+n junctions in the TFETs. Thanks to these advances, our devices achieved outstanding efficiency in synaptic characteristics with a 5750 times faster synaptic update speed and 51 times lower sub-fJ/um2 energy consumption per single synaptic update in comparison to the MOSFET-based synapse. An artificial neural network (ANN) simulation also confirmed a high recognition accuracy of handwritten digits up to ∼90% in a multilayer perceptron neural network based on our synaptic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.