Abstract

This paper presents a strategy for minimizing non-adiabatic dissipation in adiabatic arithmetic units. The non-adiabatic dissipation is minimized by architectural design involving a small number of complex logic gates. Circuit design of complex adiabatic gates, based on ordered binary decision diagrams (OBDD), is introduced. An optimized architecture for adiabatic parallel multipliers is proposed and savings in energy dissipation over competing architectures are estimated. Experimental results obtained from implementation of an adiabatic multiply-accumulate (MAC) unit suggest that the proposed strategy provides substantial improvement in energy efficiency over equivalent non-adiabatic and alternative adiabatic implementations, while achieving a competitive operating speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.