Abstract

Membrane capacitive deionization (MCDI) is a non-faradaic, capacitive technique for desalinating brackish water by adsorbing ions in charged porous electrodes. To compete with reverse osmosis, the specific energy consumption of MCDI needs to be reduced to less than 1 kWh per m3 of freshwater produced. In order to investigate the energy consumption of MCDI, we present here the energy consumption, and the fraction of energy that can be recovered during the ion desorption step of MCDI, as a function of influent concentration, water flow rate and water recovery. Furthermore, the energy consumption of MCDI based on experimental data of our lab-scale system is compared with literature data of reverse osmosis. Comparing with literature data for energy consumption in reverse osmosis, we find that for feed water with salinity lower than 60mM, to obtain freshwater of ~1g TDS/L, MCDI can be more energy efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.