Desalination | VOL. 488

Energy consumption in membrane capacitive deionization and comparison with reverse osmosis

Publication Date Aug 1, 2020


Abstract Membrane capacitive deionization (MCDI) is a technique for water desalination by adsorbing ions in charged porous electrodes. In the present experimental and theoretical study, we analyze the performance, in terms of energy consumption, salt rejection and water recovery, of MCDI operated in intermittent flow mode. With this mode, the water recovery of MCDI is increased by reducing the water flow ratio during regeneration. Both experimental and theoretical results show that high values for water recovery and salt rejection can be achieved with a lab-scale MCDI system for feed water with a salinity of 40 mM. Importantly, we find that the energy requirement of MCDI is a factor of 2.0–2.5 higher than of RO. For RO, the energy requirements were calculated with a system-scale model developed by Qin et al. [1]. Furthermore, we show that, based on our theoretical predictions, improved MCDI can reach high salt rejection and water recovery, without an additional energy penalty. In these conditions, the energy consumption of MCDI is lower than of RO. In the present work, we present new insights for a fair performance comparison of MCDI and RO.


Membrane Capacitive Deionization Technique For Water Desalination Water Recovery Salt Rejection Energy Consumption Reverse Osmosis High Salt Water High Water Recovery Technique For Desalination Values For Rejection

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023

R DiscoveryJan 30, 2023
R DiscoveryArticles Included:  3

Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.