Abstract

External wall thermal insulation system protects the major structure of building effectively. In this study, a student dormitory building with typical external wall thermal insulation system in Beijing was chosen as the research object and the energy consumption analysis was conducted to identify the optimal external thermal insulation system during the whole life cycle. The results show: for brick-concrete buildings, the consumption of clay brick, reinforced concrete and cement mortar account for more than 95% of the total materials consumption, where reinforced concrete contributes most to energy consumption. The external insulation system with similar heat transfer coefficient but consist of different insulation materials mainly affects energy consumption in materials production phase (the difference of building production energy consumption is about 7.2%), while has no significant effect in building operation phase and whole life cycle. With the increase of heat transfer coefficient, the energy consumption decreases in materials production phase, accounting for 16.3%-21.9% of the life cycle energy consumption, increases in building operation phase, accounting for 78.1%-83.7%, and can be neglected in the disposal phase. And there exists an optimization value in building whole life cycle, at which the minimum value of the energy consumption reaches, when the heat transfer coefficient is 0.3W / (m2 • K), equivalent to 127mm EPS insulation thickness or 151mm rock wool insulation thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call