Abstract

Two experiments that probe the nature of the rapid transition from elastic to plastic deformation are described. The load, and therefore stress, at which this yield point occurs is shown to be relatively independent of temperature in an iron alloy. When stresses lower than those required to generate a yield point during loading are applied for times between seconds and minutes, yielding occurs while the sample is under an applied stress. The time to generate a yield point increases as the applied stress is decreased. The possibilities of dislocation glide loop nucleation, double kink nucleation, and dislocation breakaway from pinning points are examined. Only glide loop nucleation appears to match the experimental observations. Criteria based on the stress-volume requirements of glide loop nucleation and the stress field underneath an indenter are presented which qualitatively describe the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.