Abstract

Extruded NiAl and NiAlZr alloys often show discontinuous yielding on strain aging in compression at room temperature. Two sets of experiments were conducted to understand the reasons for this yield-point behavior. First, strain-aging experiments were carried out on NiAl alloys containing O to 0.1 at. % Zr. The specimens were all deformed in compression at room temperature at a nominal initial strain rate of 1.1 × 10−4S−1, and the effect of annealing at 700 and 1200 K on the stress-strain curves and the yield strength was studied after an initial prestrain. While annealing at 700 and 1200 K consistently reduced the yield strength of both NiAl and NiAlZr, the effects were quite different. In the case of NiAl, annealing at 1200 K did not result in discontinuous yielding, whereas it generally resulted in a sharp yield point for the Zr containing alloys. Second, the PUCOT (piezoelectric ultrasonic composite oscillator technique) was used to measure the dynamic Young modulus, breakaway strain amplitude, and damping for the alloys. Only small differences were observed in the values of Young's modulus, but the breakaway strain was at least a factor of 2 to 3 lower for NiAl than for NiAlZr. The experimentally determined values of damping were used in the Granato-Lücke model to estimate the binding energy for NiAl. While the binding energy values were found to be in agreement with the calculated values of dislocation kink nucleation and migration energies in this material, to within an order of magnitude, other effects, such as dislocation pinning by quenched-in vacancies, cannot be ruled out. The observations made in this study suggest that the yield-point behavior in NiAl may be due to several factors, such as difficulties in double kink nucleation, and single kink migration, as well as dislocation-vacancy interactions; whereas, the yield-point behavior in the Zr-alloyed material is due at least in part to dislocation-solute interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.