Abstract

Needle-like twins are observed experimentally within the transition layer at the martensite–twinned martensite interface. We utilize a phase-field approach to investigate this microstructure. Our goal is to simulate the morphology of the transition layer and to perform a detailed analysis to characterize its interfacial and elastic micro-strain energy. To illustrate the micromechanical framework developed for that purpose, sample computations are carried out for a CuAlNi shape memory alloy undergoing a cubic-to-orthorhombic martensitic transformation. A particular focus of the study is on size-dependent morphology through examining the impact of twin spacing. Additionally, our results reveal that certain twin volume fractions lead to the emergence of twin branching as a way to minimize the total free energy stored in the microstructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call